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Fuzzy c-means, kernel functions,
segmentation, Multiple Sclerosis

Jacek KAWA, Ewa PIETKA

KERNELIZED FUZZY C-MEANSMETHOD IN SEGMENTATION OF
DEMYELINATION PLAQUESIN MULTIPLE SCLEROSIS

In the current study, an alternative approachfiwray clustering in a kernel space has been tebiest, a
“kernel trick™ is applied to the fuzzy c-means (#Calgorithm. Later, the modified method is empldyia an
automated segmentation of demyelination plaquééuitiple Sclerosis.

1. INTRODUCTION

Many studies have been dedicated to a problem ausdomated segmentation of Multiple
Sclerosis (MS) demyelination plagues in magnetisomance images. Algorithms for a
segmentation of the global white matter lesion §&|well as segmentation of plaques in MS [2], [3]
(and others) employ both fuzzy and non-fuzzy apgrea. In this paper, a new kernel-space variant
of a fuzzy c-means clustering method is used.

Fuzzy c-means method (FCM) partitions a set of dataors into a predefined number of
clusters. The standard algorithm performs well canynimage processing task, yet it features
several weakness. Some of the problems can be ssédrdy clustering in a high-dimensional
kernel space.

The introduction of kernel methods into the c-mealgorithm family is attributed [4] [5] to
Scholkopf at al. The kernel hard c-means methodl@spa kernel function in prototypes and
partition matrix formulas. The clustering is perfad gradually, by introducing a new data vector
in each iteration. In [6], Zhan and Cheng presbatgeneral FCM-based clustering with partition
matrix computation in kernel space. In earlier wad&rolami [7] develops sum-of-square based
clustering performed fully in kernel space and pnés some stochastic optimization. Another
method, also employing full-kernel space computegjdhas been published by Wu and Xie [8]. In
[4], Hathaway at al. present relational clusterigp featuring kernel functions.
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2. KERNELIZED FCM
2.1. FUZZY C-MEANS CLUSTERING

Let x, = (X ,...,x,)be an observed data vector{x, };, data set in feature spaF: Standard
FCM is derived to minimize the objective function:

Ju,v)= Ziu{;‘”xk =vi|* ¢V, OF (1)
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with respect to the partition matrix elemeu, and the centre of the i-th clustev,, and for a
given fuzzyfication levem(1< m< o).

The partition matrix elements satisO<u, <1,> u, =10k, and0< > u, < NCi .

The FCM clustering is performed iteratively, stagtwith a set oc initially given prototypes
and fuzzyfication levem. In each step a new partition matU ' is created, satisfying:
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The membership matriU is later employed to compute a new set of prot&dyp
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The procedure is repeated until the desired acgurat V is obtained, i.e.
ma><(|\/i”ew—vi|)<e,0<isc.

2.2. KERNEL SPACE

The fuzzy c-means algorithm features several wesda@ge Because of the Euclidean norm
used to form the objective function, the shapelas$ters in feature space is (hyper)spherical, thus
data may not be easy separable. The performantte @figorithm in the presence of noise is often
poor - outliers influence both membership functiand prototypes calculations, and may change
the number of cluster observed in the data set.iffipgovement is possible in two ways: (1) by
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modifying the objective function, or (2) by a trémrsnation of the data subjected to the clustering
process. The presented kernel FCM method featlessél trick™ to modify the objective function
in order to perform implicit data transformation.

For any given data set a non-linear mapfg: F - K ,go(Xk ): ¢, exist, that transforms the

data fromF into a high dimensional spaK . A clustering method performed in this spiK 2
yields better results than applied to the datdéndriginal spacF. The mappinc¢e is not always

known or computationally feasible. The explicitrtséormation in specific cases may be avoided by
employing the kernel functions.

Let the functiorq: FxF - R, be a positive definite kernel ovF, satisfying:

a(x.y)= aly.x).0x,y OF 4
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For any given positive definite kernel ovF, there exist a Hilbert spatH and a mapping
¢:F - H, such that [9]:

a(x.y)= e(x) ely).0x,y OF

This property, often called a “kernel trick” meatisat the value of kernel functicq is equal to
the inner product in some speH: The spaciH is referred to as kernel space.

The “kernel trick”, may be used to increase theustbess of the FCM in two-ways: (1) for
the computation of the distance between transforohester prototypes and transformed data points
in kernel space, and (2) for computation in kegpelce with implicit prototypes.

The first approach has been presented by ChenT}&. introduced kernel function has
permitted for a detection of clusters hidden frdra standard FCM. The clustering itself has not
been performed fully in the kernel space, thoughthe cluster prototypes are computed in the
original space. The second approach has been laleailawork of Girolami [7], where a matrix-
trace based clustering has been presented.

3. KERNELIZED FCM

In the current study, the “kernel trick™ has baesed to modify the original fuzzy c-means
algorithm in order to perform the implicit-protogg-FCM clustering in the kernel space.

Let the transition from a feature sp¢Feto a kernel spacH be obtained through a mapping
qo(x) and let the corresponding kernel functqrbe available. This means, that for each data vecto

X, , the correspondin ¢, = ¢(x, )is defined, and for each pair of data vec (xk ,xp), the inner
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producte, (¢, in His equal tcq,, = q(xk ,xp). A kernel space FCM clustering is then possible by
minimization of a new objective function:

‘J(U’W(U)): Ziuir;”(l)k _Wi”Z’(pk w; OH (7)
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The optimization of the objective function yields:
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Let alb= (a;b), andC, = zlu’“ . The Euclidean norm is given [|* = (.;), thus:
ip
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An inner product of selected vectors in kernel sfH: may be replaced by corresponding
kernel matrix element.
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S =[um|dnt..q]
Uz
U

and introducing element-wise matrix multiplicati® nfor a symmetric matriQ:
A=CiY(s°s7°Q)

resembles sum of all the elements, and

B, = —2C° z (rOWk (Si ° Q))

states for a sum of all the elements of row k.

The partition matrix satisfies then:

(12)
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(17)
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Fig. 1 (a) input data set; (b) clustering res(thsesh. 0.5)

Kernelized FCM is performed in following steps:

Generate the kernel matQ using a kernel functioq. Set the value cc, m ande
Compute a new partition matiU™" using (17)

Uold — U,U: Unew

if max({U® —U™ |)< ¢ , then break, elsstep 2

Note: In specific cases, the data for a clustering magiven only by a data-relation-mat/P. If
the relation matriyP assembles relational data for each pair of cladteata points, and satisfies
the kernel conditions similar to (4) and (5), ihdae directly used in the clustering process imstea
of the generated kernel mat Q.

Pwbd P

a b C

Fig. 2 Brain tissue segmentation (a) second cludt&CM, (b) biggest distinct region after threkling

4. RESULTS AND CONCLUSIONS

The performance of the developed algorithm has lbested on a set of artificial data. The
example results obtained for an input set (fig, Aayl Gaussian (RBF) kernel have been presented
in figure 1b. Both circles have been assigned dovidual clusters.
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Fig. 3 MS plaques extraction (a) original slice), 4th cluster, (c) 5th cluster

The algorithm has also been implemented to a seigti@m of demyelination plaques in
Multiple Sclerosis, performed at a CAD workstat{d®]. The kernelized FCM has been employed
at two phases of the FLAIR-MR (in both cases ohf/$pels with unique signal intensity have been
processed) - figure 3a, image analysis. At thenaeessing stage, the FCM performed in the
polynomial kernel space has extracted the brasud¢igfigure 2abc). Then, the radial basis (RBF)
function has been used at the MS plaque segmemtétgure 3bc). The results have been later
combined and subjected to further processing (@&gur

The presented method has been used for segmentdtibtR images of 15 patients with
advanced Multiple Sclerosis. The results of intesskier comparison [11] with reference set
(created with CAD built-in tools), have shown atbeperformance than a standard FCM algorithm;
less false positives rate has been observed.

Fig. 4 Segmentation results

Total time necessary for processing MR-extractdd dathe application is similar as for the
standard FCM. Generally, the most time and stocagesuming operation during the evaluation of
the algorithm, is a kernel-matrix computation. Thésk is performed only once during the
clustering process, but the overall evaluation tioheéhe presented method is likely to increase
quickly with growing number of input data. One slibumote, however, that no relation exist
between the number of features that describe tkee skt and the size of kernel-matrix - i.e. the
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method is expected to perform well for a small de¢d described by either a small, or a large
number of features.
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