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KERNELIZED FUZZY C-MEANS METHOD IN SEGMENTATION OF 
DEMYELINATION PLAQUES IN MULTIPLE SCLEROSIS 

In the current study, an alternative approach to a fuzzy clustering in a kernel space has been tested. First, a 
“kernel trick”' is applied to the fuzzy c-means (FCM) algorithm. Later, the modified method is employed in an 
automated segmentation of demyelination plaques in Multiple Sclerosis. 

1. INTRODUCTION 

Many studies have been dedicated to a problem of an automated segmentation of Multiple 
Sclerosis (MS) demyelination plaques in magnetic resonance images. Algorithms for a 
segmentation of the global white matter lesion [1], as well as segmentation of plaques in MS [2], [3] 
(and others) employ both fuzzy and non-fuzzy approaches. In this paper, a new kernel-space variant 
of a fuzzy c-means clustering method is used.  

Fuzzy c-means method (FCM) partitions a set of data vectors into a predefined number of 
clusters. The standard algorithm performs well on many image processing task, yet it features 
several weakness. Some of the problems can be addressed by clustering in a high-dimensional 
kernel space. 

The introduction of kernel methods into the c-means algorithm family is attributed [4] [5] to 
Schölkopf at al. The kernel hard c-means method employs a kernel function in prototypes and 
partition matrix formulas. The clustering is performed gradually, by introducing a new data vector 
in each iteration. In [6], Zhan and Cheng present the general FCM-based clustering with partition 
matrix computation in kernel space. In earlier work, Girolami [7] develops sum-of-square based 
clustering performed fully in kernel space and presents some stochastic optimization. Another 
method, also employing full-kernel space computations, has been published by Wu and Xie [8]. In 
[4], Hathaway at al. present relational clustering, also featuring kernel functions. 
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2. KERNELIZED FCM 

2.1. FUZZY C-MEANS CLUSTERING 

Let ( )ni x,,x= …kx be an observed data vector of { }N

=k 1kx data set in feature space F . Standard 

FCM is derived to minimize the objective function:  
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with respect to the partition matrix element iku  and the centre of the i-th cluster - iv , and for a 

given fuzzyfication level ( )∞≤ <mm 1 . 

The partition matrix elements satisfy: k=uu ikik ∀≤≤ ∑ 11,0 , and iN<u< ik ∀∑0 . 

The FCM clustering is performed iteratively, starting with a set of c  initially given prototypes 
and fuzzyfication level m . In each step a new partition matrix U  is created, satisfying: 

 

∑















−

−

−
−

−
−

c

z=

m

m

new
ik =u

1

1

2

1

2

kz

ki

xv

xv
 (2) 

The membership matrix U  is later employed to compute a new set of prototypes:  
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The procedure is repeated until the desired accuracy of V  is obtained, i.e. 
| |( ) ci<ε,<new

i ≤− 0 max iVV . 

2.2. KERNEL SPACE 

The fuzzy c-means algorithm features several weaknesses. Because of the Euclidean norm 
used to form the objective function, the shape of clusters in feature space is (hyper)spherical, thus 
data may not be easy separable. The performance of the algorithm in the presence of noise is often 
poor - outliers influence both membership function, and prototypes calculations, and may change 
the number of cluster observed in the data set. The improvement is possible in two ways: (1) by 
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modifying the objective function, or (2) by a transformation of the data subjected to the clustering 
process. The presented kernel FCM method features “kernel trick”' to modify the objective function 
in order to perform implicit data transformation. 

For any given data set a non-linear mapping ( ) kk φxKF =φ,:φ  → exist, that transforms the 

data from F  into a high dimensional space K . A clustering method performed in this space K  
yields better results than applied to the data in the original space F . The mapping φ  is not always 

known or computationally feasible. The explicit transformation in specific cases may be avoided by 
employing the kernel functions.  

Let the function RFF →×:q , be a positive definite kernel over F , satisfying: 

 ( ) ( ) Fyxxyyx ∈∀ ,,,q=,q  (4) 
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For any given positive definite kernel over F , there exist a Hilbert space H  and a mapping 
HF →:φ , such that [9]: 

 ( ) ( ) ( ) Fyxyxyx ∈∀ ,,φφ=,q T  

This property, often called a “kernel trick”' means, that the value of kernel function q  is equal to 

the inner product in some space H . The space H  is referred to as kernel space.  

The “kernel trick”, may be used to increase the robustness of the FCM in two-ways: (1) for 
the computation of the distance between transformed cluster prototypes and transformed data points 
in kernel space, and (2) for computation in kernel space with implicit prototypes.  

The first approach has been presented by Chen [6]. The introduced kernel function has 
permitted for a detection of clusters hidden from the standard FCM. The clustering itself has not 
been performed fully in the kernel space, though, as the cluster prototypes are computed in the 
original space. The second approach has been available in work of Girolami [7], where a matrix-
trace based clustering has been presented. 

3. KERNELIZED FCM 

In the current study, the “kernel trick”' has been used to modify the original fuzzy c-means 
algorithm in order to perform the implicit-prototypes-FCM clustering in the kernel space.  

Let the transition from a feature space F  to a kernel space H  be obtained through a mapping 
( )xφ  and let the corresponding kernel function q  be available. This means, that for each data vector 

kx , the corresponding ( )kφ= xφk is defined, and for each pair of data vectors ( )pk xx , , the inner 
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product pk φφ ⋅  in H is equal to ( )pk xx ,q=qkp . A kernel space FCM clustering is then possible by 

minimization of a new objective function:  
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The optimization of the objective function yields: 
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Thus 
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Let baba ;=⋅ , and 
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.  The Euclidean norm is given as .;..
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= , thus: 
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An inner product of selected vectors in kernel space H  may be replaced by corresponding 
kernel matrix element. 
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Therefore: 
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Denoting: 
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and introducing element-wise matrix multiplication ° , for a symmetric matrix Q : 

 ( )∑ QSS T
ii °°C=A ji

2  (15) 

resembles sum of all the elements, and  

 ( )( )∑− QS i°=B kiik row2C2  (16) 

states for a sum of all the elements of row k. 

The partition matrix satisfies then:  
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Fig. 1  (a) input data set; (b) clustering results (thresh. 0.5) 

Kernelized FCM is performed in following steps: 

1. Generate the kernel matrix Q  using a kernel function q . Set the value of c , m  and ε  

2. Compute a new partition matrix newU  using (17) 
3. newold UUUU =,=  

4. if | |( ) ε<newold UU −max , then break, else: step 2 

Note: In specific cases, the data for a clustering may be given only by a data-relation-matrix P . If 
the relation matrix P  assembles relational data for each pair of clustered data points, and satisfies 
the kernel conditions similar to (4) and (5), it can be directly used in the clustering process instead 
of the generated kernel matrix Q . 

 

Fig. 2 Brain tissue segmentation (a) second cluster of KFCM, (b) biggest distinct region after thresholding 

4. RESULTS AND CONCLUSIONS 

The performance of the developed algorithm has been tested on a set of artificial data. The 
example results obtained for an input set (fig. 1a), and Gaussian (RBF) kernel have been presented 
in figure 1b. Both circles have been assigned to individual clusters. 
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Fig. 3 MS plaques extraction (a) original slice, (b) 4th cluster, (c) 5th cluster 

The algorithm has also been implemented to a segmentation of demyelination plaques in 
Multiple Sclerosis, performed at a CAD workstation [10]. The kernelized FCM has been employed 
at two phases of the FLAIR-MR (in both cases only the spels with unique signal intensity have been 
processed) - figure 3a,  image analysis. At the preprocessing stage, the FCM performed in the 
polynomial kernel space has extracted the brain tissue (figure 2abc). Then, the radial basis (RBF) 
function has been used at the MS plaque segmentation (figure 3bc). The results have been later 
combined and subjected to further processing (figure 4). 

The presented method has been used for segmentation of MR images of 15 patients with 
advanced Multiple Sclerosis. The results of interobserver comparison [11] with reference set 
(created with CAD built-in tools), have shown a better performance than a standard FCM algorithm; 
less false positives rate has been observed. 

 

Fig. 4 Segmentation results 

Total time necessary for processing MR-extracted data in the application is similar as for the 
standard FCM. Generally, the most time and storage consuming operation during the evaluation of 
the algorithm, is a kernel-matrix computation. This task is performed only once during the 
clustering process, but the overall evaluation time of the presented method is likely to increase 
quickly with growing number of input data. One should note, however, that no relation exist 
between the number of features that describe the data set and the size of kernel-matrix - i.e. the 
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method is expected to perform well for a small data set described by either a small, or a large 
number of features.  
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