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EDGE-PRESERVING REGULARIZATION FOR CONFOCAL DATA
DECONVOLUTION

Point spread function (PSF, also termed impulse response) is an important characteristics of imaging
devices and as such it can be with advantage used for data reconstruction and restoration. In confocal
microscopy the non-ideal PSF introduces significant blurring. Therefore, restoration methods based on
the so called deconvolution were developed, which utilize the PSF estimated directly from the scanned
data (blind deconvolution) or obtain it from other sources. A problem of the well-known Richardson-
Lucy (R-L) algorithm is that it does not have to converge when no regularization is used.

In this paper, we propose a fully three-dimensional deconvolution algorithm which extends the R-L
algorithm by using an edge-preserving regularization term based on data modeling by Markov random
fields.

1 INTRODUCTION

The main goal of restoration techniques is to suppress image degradation exploiting knowledge
of its nature. In confocal microscopy, images are corrupted by undesired contribution of out-of-focus
intensities due to non-ideal point spread function (PSF) of the device. Such PSF can be estimated by
observing the behavior of light originating from a point source and passing through the microscope
optics. Subsequently, PSF can be used to quantitatively compensate for the blurring of images due to
out-of-focus information in a process called deconvolution.

In confocal microscopy (CM) the non-ideal PSF introduces significant blurring, and moreover,
in confocal laser scanning microscopy it is not only device- but also sample-dependent. Traditional
image restoration techniques for confocal microscopy are in details described in Vlient et al [13].
Further, restoration methods based on the so-called blind deconvolution were developed [2], which
estimate the PSF on a per voxel basis directly from the scanned data. This, unfortunately, leads
to a large the number of estimated parameters and thus also to prohibitively large computational
times. In this paper we propose a fully three-dimensional deconvolution algorithm with blind but
also with traditional estimation of the PSF of the microscope. The traditional PSF estimation can be
done by recording images of subresolution point sources in the form of, for example, various types
of fluorescent microspheres with diameter bellow 0.2um. The algorithm issues from modeling by
Markov random fields (MRF) and from maximum likelihood (ML) estimation techniques and other

*Comenius University, DACS, Bratislava, Slovakia, International Laser Center, Bratislava, Slovakia, Austrian
Academy of Sciences, Austria. zimanyi@fmph.uniba.sk, mateasik@ilc.sk, milos.sramek@oeaw.ac.at



404 Zimanyi et al. / XI Conference "Medical Informatics & Technologies" - 2006

Bayesian approaches (Richardson-Lucy algorithm [10]), and extends our previous work on object
reconstruction in tomographic data [16, 15].

Images reconstructed by deconvolution manifest sharper edges and details, lower background
influence, better contrast, and improved signal-to-noise ratio. Such images are therefore suitable for
further interactive and automated evaluation techniques, predominantly in the areas of analysis of
biological structures at sub-cellular resolution. However, processing and data deconvolution is often
alleviated by a huge amount of data (up to 256 images of 2048 x 2048 pixels, each with 32 spectral
bands).

In this paper, in Section 2 we describe related work, while the topic of Section 3 is deconvolution
theory. Here, the Richardson-Lucy (R-L) algorithm, maximum-aposteriori methods and regulariza-
tion are introduced. Subsequently, in Section 4 we propose additional regularization methods for the
R-L algorithm issuing from the MRF-based modeling. Finally, in Section 5 we present results and
conclusion.

2 RELATED WORK

Classical image reconstruction techniques by linear restoration filters [5] are based on minimiza-
tion of mean square (Wiener filter) or least square errors (Tikhonov-Miller). Under special conditions,
the Tikhonov-Miller approach can be represented as a Wiener filter [14]. Linear image restoration has
two central problems connected with (i) band-limited character of the imaging technology, and (i1)
noise degradation of the images. Due to them, linear reconstruction is not appropriate for recon-
struction of confocal images. However, it was successfully used in medical imaging applications [9].
Other applications of these techniques, such as determination of the material distribution and relax-
ation spectrum estimation, can be found in [4].

Problems with linear restoration of confocal images reside in the presence of ringing and other
artifacts [5]. Better results can be obtained using non-linear algorithms, i.e. iterative methods based
on maximum-likelihood or maximum a posteriori estimation. The most important iterative techniques
are van Clittert’s [1] and Richardson-Lucy [10] algorithms. The basic idea of van Clittert’s method is
to optimize some quality measure of the estimate by minimizing the difference between an estimated
image and the measured image. The estimated image is created by means of a model based on the
PSF of the microscope. This algorithm belongs to the deterministic deconvolution techniques. A
similar technique, but a non-deterministic one, was proposed in Zimanyi [16].

The most popular method in the category of maximum likelihood (ML) estimation techniques is
the Richardson-Lucy algorithm [10] which computes the unregularized ML estimator and therefore
is sensitive to the noise realization. Numerous modifications and improvements of this algorithm
exist [14], including those employing blind deconvolution.

PSF estimation is a non-trivial problem, since in CM it does not depend only on the microscope
but it also depends on the measured object. Therefore, it is not sufficient to estimate just one PSF for
the whole data volume, but specific PSFs for different substances or materials in the measures scene
should be searched for [2].

3 THEORETICAL BACKGROUND

3.1 THE RICHARDSON-LUCY ALGORITHM

Maximum likelihood methods estimate the conditional probability P(d|f), where d is the ob-
served data and f is the object estimation. ML procedure finds the value of one or more parameters
for a given statistics which maximizes the known likelihood distribution. [7].
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In the following, we assume Poisson noise distribution of the observed data which can be ex-

xX,—A . . . .
A =, where A is the expected number of events occurring during a fixed unit

pressed as P(x,A) =
interval.

If the observed noisy data d is obtained by applying a Poisson distribution to f (i.e., image statis-
tics is described as a Poisson process), we can set x =d, where d = {d,,r € ¥} and A = h® f, where
h is PSF. The measured value d, means photon count at any point r of definition range. Then, the
likelihood probability could be expressed as [8, 10]
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where (h® f), = Yc.ohr—sfs is a convolution for sites . (. is a definition range of the mea-
sured data d, in our case volume of size 1024x1024x27). It means that the photon count d, inside a
neighborhood (x,Ax) of the point x is on average proportional to f ® P(x|f)Ax. The conversion of
fluorescence intensity to a discrete number of detected photons is described as a translated Poisson
process [14].
Solution of this problem is the well-known iterative form [8, 10]

d
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where Al is transpose of & (if h = hy_, then hT = h,_,). The analogy of AT in continuous form is an
adjoint operator £* and h*(x) = h(—x).
A problem of the R-L algorithm is that it does not have to converge when no regularization is used

and the denominator has some zero values.
3.2 MAXIMUM A POSTERIORI METHODS

Let f C & is any set of values defined by Sy C ., where .’ is a set of all possible vectors f (in
our case it is a 3D volume and each element of this volume—voxel can have values from 0-256). We
want to find such a vector f that the probability P(f|d) is maximum. Hence, the solution is

[T =arg ]r}éau;P(ﬂd)- (3)

This approach for estimating f* by means of likelihood P(f|d) is called a maximum a posteriori
(MAP) estimation.
We can express the relationship between the measured data and the set of values f by the Bayes

formula [7]:
R @

where P(f|d) is a conditional probability (a posterior probability), where d is fixed. Its maximization
gives the solution, P(d|f) is obtained by simulating the CM measurement procedure on the model f,
P(f) is a priori information about the object, obtained independently of the results of the measure-
ment (in this paper it will be derived from the assumption of a MRF model) and, finally, P(d) denotes
probability of the single realization measured data (it is assumed to be a constant).

3.3 THE RICHARDSON-LUCY ALGORITHM WITH TIKHONOV-MILLER REGULARIZATION

A problem of the R-L algorithm resides in possible convergence to an unacceptable solution. An
improvement can be achieved by adding prior model of the object, which represents a regularization
term.
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In 3D image restoration the Tikhonov-Miller (T-M) regularlzatlon [3, 14] is often used. The
regularization term is used in the least square filter |7 ® f d||* between the acquired image d and

a blurred estimation f of the original object f. Finding the estimate f is known to be an ill-posed
problem [12] and the solution by minimization of this function is the well-known Tikhonov functional

®(f) = [lhe f—d|I* + A |RF]?, (5)

where || - || is the Euclidean norm, A is a regularization parameter and R is a regularization matrix.

In order to get |2 ® f — d||, we used simulation by Poisson probability density function (1). Then,
we used logarithmic form of TM functional (5) and maximization of P(f) is changed to minimization
of L1p. Hence,

Lru(f) =WnPA|f)+InP(f) = Y [—(h@ f)r+dIn(h@ f))]+Arm Y, IVF?,  (6)
re. re

where V f = f; — fi—1. It depends on neighboring system.
From the ML principle, we can define new minimization functional as a differentiation of L by f

z—Z =)+ Y dy——"—+2Ary Y |Vf| = 0; foreachs € 7. (7)
re.s re. h ®f ses
Inspired by (2), we get after minimization
d £l
(n+1) _ hT - f >1 8
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This formula is an iterative form of deconvolution algorithm called Richardson-Lucy algorithm
with Tikhonov-Miller regularization. The algorithm has three input parameters: PSF h, measured
data d and the coefficient A7j,. The deconvolution process starts with some initial volume values (e.g.
background values) and finishes after a finite number of iteration.

4 THE PROPOSED TECHNIQUE—IMPROVEMENT OF REGULARIZATION

Our goal is to estimate appropriate regularization parameters for different tissues and regions of
the confocal data. From the MAP approach (3), we can see that a posteriori probability depends on
both P(f|d) and P(f).

In the previous approach the Tikhonov functional was used as a regularization factor in P(f). In
confocal data deconvolution also other regularization forms as maximum entropy regularization [2]
and Iterative Constrained Tikhonov-Miller deconvolution [6] are known. These regularizations do not
take into account different types of structures present in the confocal data. Therefore we propose new
regularization functions for different types of material structures (foggy objects, objects with a edges,
etc), based on the MRF modeling.

We will now derive a general form of probability P(f) by replacing the squared gradient in (6) by
a general function g(f):

L=IP(d|f)+WnP(f)= Y [-(h@[f)r+d/In(h@f))]+A1 Y g(f (9)
res res

Hence, the stationary points of L are the solutions of

re/ re.
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Since PSF is normalized to 1, we can simplify (10) to

dg(x) hy—s
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re.

for each s € .. (11)

Multiplying each of this equation by the related original data f yields:

ag(x) hr—sfs
fs (1+7L Y =) 4 ; foreach s € .. (12)
res af res (h®f)r
Using the EM algorithm, we get an iterative form
(n) 1
fs(rH-l) _ [ Z d, fr—ss ) PR for each s € .7, (13)
res (h®f)r 1+er€f gf

and finally, utilizing a convolution form Y ;c & a,_sbs = (a®b),, we get

(n)
f(n—l—l) _ {hT® ( d )] f ; foreachn > 1, (14)
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The function g(x) in the MAP-MREF theory is called potential energy function [7].

4.1 POTENTIAL ENERGY FUNCTION

The potential function g(x) is in general piecewise continuous and its set of values is ordered.
It can significantly influence noise removal and edge preservation properties of the reconstruction
process. For example, in the case of potential function g(n) = |n|, where N = f; — f;_1, noise has
large influence on the deconvolution process. On the other hand, in the case of a potential function
concave on the interval (0, o), noise has smaller influence.

For the purpose of restoration, the function g is generally even g(1n) = g(—n) (due to the symme-
try of f), non-negative on the interval (0,0) g(1) > 0 and non-decreasing 1; < M2 = g(M1) < g(M2).
Derivative of g(-) can be expressed as g’(n) = 2nh(n). The function hy is called Adaptive iterated
(AI) function and is usually parametrized by ¥ > 0. For further properties and requirements on & see
[7].

As we have mentioned before, the range, where the function g(x) is concave or convex is very
important for the regularization process. By its specification we can design specific function for more
or less noisy data, for foggy materials, or materials with edges. Table 1 presents the most common Al
functions [7] and on the figure 1 are shown their geometric representation. Here, parameter y defines
interval By, where function g(1) is convex:

By={n|g,(n) >0} = (br,bn). (15)

Outside of this interval g(n) is concave, which means that influence of differences of values g(1n;) a
g(m2) is suppressed and thus also is suppressed influence of noise on the restoration process.

S CONCLUSIONS

We implemented both versions of the R-L algorithm, the original one with the T-M regularization
(Eq. 8) and the new one with edge-preserving MRF regularization (Eq. 14) in the C++ language on a
2GHz AMD Sempron based PC equipped with 1GB of main memory.
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Figure 1: Al function graphs (See Table 1)

We used two data sets in testing. The first was a synthetic one of 256 x 256 x 256 voxels with a
voxelized hollow sphere [11] corrupted by Poisson noise (Fig 2). In this data set we focused on the
ability to reconstruct homogeneous regions with sharp edges. As expected, we observed better results
for less noisy data with potential functions g4 and g5 and for higher noise levels with functions g3 and
g1- The lower row of Fig. 2 illustrates the results obtained with our new algorithm in comparison to
the traditional reconstruction with the T-M regularization, where undesired blurring was observed. In
both reconstructions 1000 iterations were used which took approximately 40 minutes.

The second data set was a stack of 10 slices of 512 x 2048 pixels (0.119 x 0.199 um per pixel),
depicting a cell, obtained by a confocal microscope. Here, no homogeneous areas were expected,
since the chosen contrast agent accentuated membrane structures (Fig. 3). Therefore, the g3 potential
function was used for regularization.

In both cases the PSF was estimated from available parameters of the voxelization procedure (the
sphere data set) and the scanning device (the cell data set). However, no exact measurements of
PSF was involved. Therefore, our future work is to test the algorithms with estimates of real PSFs,
to thoroughly evaluate influence of the potential functions in the case of different object types and

Table 1: Al functzions

hiy(m) =7 sum=—r 7 | By=(-\1/})
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Figure 2: One slice of the synthetic sphere data. Upper row: left—original, right—data corrupted
by Poisson noise. Lower row: Deconvolution of the sphere data set by the R-L algorithm with T-M
regularization (left) and our edge-preserving algorithm with using the function g4 (right).

finally, to optimize the algorithms to achieve better performance.
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Figure 3: The cell data. From left: original, T-M based deconvolution, our technique.
With courtesy of Dr. Zahradnikova, Laboratory of Molecular Biophysics,
Institute of Molecular Physiology and Genetics, SAS.



410 Zimanyi et al. / XI Conference "Medical Informatics & Technologies" - 2006

BIBLIOGRAPHY

[1] AGARD D.A., HIRAOKA Y., SHAW P, and SEDAT J.W. Fluorescence microscopy in three dimensions.
Methods Cell Biol.30, pages 353-377, 1989.

[2] DEMONVEL]J. B.,SCARFONEE., CALVEZS. L., and ULFENDAHL M. Image-adaptive deconvolution
for three-dimensional deep biological imaging. Biophysical Journal 85, pages 3991-4001, 2003.

[3] DEY N., BLANC-FAI'RAUD L., ZIMMER CH., ROUX P., KAM Z., OLIVO-MARIN J.-CH. , and ZERU-
BIA J. 3d microscopy deconvolution using richardson-lucy algorithm with total variation regularization.
Rapport de recherche de I'INRIA - Sophia Antipolis, 2004.

[4] FRONTINI G. and CHAUBELL J. Inversion of turbidity measurements of polymer latex using wavelet
functions. Chemometrics and intelligent laboratory systems, Vol. 47:89-97, 1999.

[5] GONZALEZ R. and WOODS R. Digital Image Processing, 2nd Edition, volume ISBN 0-20-118075-8.
Upper Saddle River, New Jersey, 2002.

[6] LAGENDIK R. L.. Iterative Identification and Restoration of Images. PhD thesis, Delf Iniversity Press,
AO Hilversum, Netherlands, 1990.

[7]1 LIS.Z. Markov Random Field in Computer Vision. Springer, 1995.

[8] LUCY L.B. An iterative technique for rectification of observed distributions. The Astronomical Journal,
79(6), pages 745-765, 1974.

[9] REKANOS I. T., PANAS S., and TSIBOUKIS T. Microwave imaging using the finite-element method and
a sensitivity analysis approach. IEEE, Transactions on medical imaging, Vol. 18(11):1108-1114, 1999.

[10] RICHARDSON W.H. Bayesian-based iteractive method of image restoration. J. Phys. A Math. Gen.: 28,
pages 511-532, 1972.

[11] SRAMEK M. and KAUFMAN A.. Alias-free voxelization of geometric objects. /IEEE Transactions on
Visualization and Computer Graphics, 5(3):251-266, 1999.

[12] TIKHONOV A.N. and ARSENIN V.Y. Solutions of ill-posed problems. Halsted Press., New York, 1977.

[13] VAN KEMPEN G.M.P, VAN VLIET L.J., and VERVEER P.J. Application of image restoration methods
for confocal fluorescence microscopy. C.J. Cogswell, J.-A. Conchello, T. Wilson (eds.), 3-D Microscopy:
Image Acquisition and Processing IV, Proc. SPIE, 2984:114—124, 1997.

[14] VAN KEMPEN G.M.P, VAN VLIET LJ., and VERVEER PJ., and VAN DER VOORT HTM. A
quantitative comparison of image restoration methods for confocal microscopy. Journal of Microscopy -
Oxford, vol. 185, no. 3, pages 354-365., 1997.

[15] ZIMANYI M. Estimation of ct scanner point-spread function. 6. International Sciencific Conference
of the Fund of Jozef Murgas for Telecommunications joined with competition; Bratislava Slovakia, pages
4648, June 2-4 2000.

[16] ZIMANYI M. Reconstruction of tomographics data by markov random fields. CESCG ’97-’99 selected
papers; Osterreichische Computer Gesellschaft Wien; ISBN 3-85403-141-6, pages 93—102, 2000.



